If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+112+192
We move all terms to the left:
-(-16H^2+112+192)=0
We get rid of parentheses
16H^2-112-192=0
We add all the numbers together, and all the variables
16H^2-304=0
a = 16; b = 0; c = -304;
Δ = b2-4ac
Δ = 02-4·16·(-304)
Δ = 19456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19456}=\sqrt{1024*19}=\sqrt{1024}*\sqrt{19}=32\sqrt{19}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{19}}{2*16}=\frac{0-32\sqrt{19}}{32} =-\frac{32\sqrt{19}}{32} =-\sqrt{19} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{19}}{2*16}=\frac{0+32\sqrt{19}}{32} =\frac{32\sqrt{19}}{32} =\sqrt{19} $
| 32^2x=16 | | -d/8=-9/2 | | 2y-6=6-2y | | -2(x-14)=-32 | | H=-16t^2+192+112 | | H(t)=-16t^2+192+112 | | 13x^2-419x+2850=0 | | H(t)=-16t^2+112+192 | | 1/3(x-5)=1/3x-10/6 | | (a+10)+2a+a=180 | | 7(6-8k)=-350 | | 17.95+0.83x=255.33 | | -48=-1.2m | | 7(-b+7)+1=106 | | 7(2-4n)=182 | | 5x-3(x-4)=-5+4+1 | | -199+13x=1x+125 | | 4(3x−5)=30−4(x−4) | | 2x+15=x-10 | | 5(r-1)-r=2r-(2r+1) | | A+(a+10)+2a=180 | | 5x-8=91-6x | | 6-h×3=12 | | 10x+2=11x-7 | | (x-2)+5=2(x-2)+2 | | 450=2x+x | | -65-3x=67-9x | | 12a+a-18a+15a+-16=14 | | 7t=10/20 | | 3b=8/12 | | 16x+4=12x+8 | | 13n-12n+3=15 |